$cos^{-1}(cos(-5))+sin^{-1}(sin(6))-tan^{-1}(tan(12)) $ is equal to:
(The inverse trigonometric functions take the principal values)
(A) $3\pi - 11$
(B) $3\pi + 1 $
(C) $4\pi - 11$
(D) $4\pi - 9$
Solution
The given expression can be rewritten as,
$cos^{-1}cos5+sin^{-1}sin 6-tan^{-1} tan12 $
Considering the principal values the given expression can be further rewritten as,
$cos^{-1}cos(2\pi - 5)+sin^{-1}sin (-(2\pi- 6))-tan^{-1} tan(-(4\pi -12)) $
Or $(2\pi - 5)+ (-(2\pi- 6))-(-(4\pi-12)) = 4\pi -11 $
Answer: (C)