Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$R_1 = (4\pm 0.8) \Omega $

$R_2 = (4\pm 0.4) \Omega $

$R_{eq} =? $

Two resistors $R_1 = (4\pm 0.8) \Omega $ and $R_2 = (4\pm 0.4) \Omega $ are connected in parallel. The equivalent resistance of their parallel combination will be:

(A) $(4 \pm 0.4 ) \Omega $
(B) $(2 \pm 0.3 ) \Omega $
(C) $(4 \pm 0.3 ) \Omega $
(D) $(2 \pm 0.4 ) \Omega $

Solution

We have, $R=\frac {R_1 R_2}{R_1 + R_2 } = \frac {4 \times 4}{4+4} = 2 \Omega $

Further, $\frac {1}{R} = \frac {1}{R_1} + \frac {1}{R_2} $

$\therefore \frac {|\Delta R |}{R^2 }=\frac {|\Delta R_1 |}{R_1 ^2 } + \frac {|\Delta R_2 | }{R_2 ^2 }$

$\therefore \frac {|\Delta R |}{2^2 }=\frac {0.8}{4^2 } + \frac {0.4}{4^2 } = \frac {1.2}{16}$

$\therefore |\Delta R| = 0.3 \Omega $

$R_{eq} = R \pm |\Delta R | = 2 \pm 0.3 \Omega $

Answer: (B)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)