$\omega = z\bar z - 2z + 2$
$\left| {\frac{{z + i}}{{z - 3i}}} \right| = 1$ $Re(\omega ) $=min.$n_{min.} \in N =?$ $\omega ^n \in R$Let z and $\omega $ be two complex numbers such that $\omega = z\bar z - 2z + 2$, $\left| {\frac{{z + i}}{{z - 3i}}} \right| = 1$ and $Re(\omega )$ has minimum value. Then, the minimum value of $n \in N $ for which $\omega ^n $ is real, is equal to _ _ _ _ .
Solution
Let z = x + iy
We have, $\left| {\frac{{x + iy + i}}{{x + iy - 3i}}} \right| = 1$
$ \Rightarrow |x + i(y + 1)| = |x + i(y - 3)|$
$ \Rightarrow {x^2} + {(y + 1)^2} = {x^2} + {(y - 3)^2}$
$ \Rightarrow 2y + 1 = - 6y + 9$
$ \Rightarrow y = 1$
So, $z = x + i$
Now, $\omega = z\bar z - 2z + 2 = {x^2} + {1^2} - 2(x + i) + 2 = {x^2} - 2x + 3 - 2i$
${\mathop{\rm Re}\nolimits} (\omega ) = {x^2} - 2x + 3 = {(x - 1)^2} + 2 = 2 + non - negative$
${\{ {\mathop{\rm Re}\nolimits} (\omega )\} _{min.}} = 2$
$\omega = 2 - 2i = 2\sqrt 2 \left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }}i} \right) = 2\sqrt 2 \left[ {\cos ( - \frac{\pi }{4}) + i\sin (- \frac{\pi }{4}}) \right]$
${\omega ^n} = {(2\sqrt 2 )^n}\left[ {\cos (- \frac{{n\pi }}{4} ) + i\sin (- \frac{{n\pi }}{4}}) \right]$
For $\omega ^n $ to be real, $\sin ( - \frac{{n\pi }}{4} ) = 0$
The smallest natural number n satisfying above = 4