We have, $e^{i\theta}=cos\theta +i sin\theta $
Let, $\theta = 2n\pi + \frac {\pi}{2}$
Then, $e^{i.(2n\pi + \frac {\pi}{2})}=cos (2n\pi + \frac {\pi}{2}) +i sin (2n\pi + \frac {\pi}{2}) $
$\Rightarrow e^{i.(4n+1) \frac {\pi}{2}}=0+i.1 $
$\Rightarrow i.(4n+1)\frac {\pi}{2} = \ln i $
Let, $z=i^i$
$\Rightarrow \ln z = i.\ln i$
So, $\ln z = i.i(4n+1)\frac {\pi}{2}= i^2.(4n+1)\frac {\pi}{2} = -(4n+1)\frac {\pi}{2}$
$\Rightarrow z = e^{-(4n+1)\frac {\pi}{2}}$ = Real number
Hence, True.