Let $a+b+c=k$. So,
$k(a+b)=15$
$k(b+c)=6$
$k(c+a)=-3$
$k(b+c)=6$
$k(c+a)=-3$
Adding all of the above, $k.2k=18$
$\Rightarrow k=\pm 3$
Case I: $k=3$
$a+b=\frac {15}{k}=5$
$b+c=\frac {6}{k}=2$
$c+a=\frac {-3}{k}=-1$
$b+c=\frac {6}{k}=2$
$c+a=\frac {-3}{k}=-1$
$c=(a+b+c)-(a+b)=k-(a+b)=3-5=-2$
$a=(a+b+c)-(b+c)=k-(b+c)=3-2=1$
$b=(a+b+c)-(c+a)=k-(c+a)=3-(-1)=4$
$a=(a+b+c)-(b+c)=k-(b+c)=3-2=1$
$b=(a+b+c)-(c+a)=k-(c+a)=3-(-1)=4$
$\therefore \{ a,b,c\} \equiv \{ 1,4, - 2\} $
Case II: $k=-3$
$a+b=\frac {15}{k}=-5$
$b+c=\frac {6}{k}=-2$
$c+a=\frac {-3}{k}=1$
$b+c=\frac {6}{k}=-2$
$c+a=\frac {-3}{k}=1$
$c=(a+b+c)-(a+b)=k-(a+b)=-3-(-5)=2$
$a=(a+b+c)-(b+c)=k-(b+c)=-3-(-2)=-1$
$b=(a+b+c)-(c+a)=k-(c+a)=-3-1=-4$
$a=(a+b+c)-(b+c)=k-(b+c)=-3-(-2)=-1$
$b=(a+b+c)-(c+a)=k-(c+a)=-3-1=-4$
$\therefore \{ a,b,c\} \equiv \{ -1,-4, 2\} $
Thus, $\{ a,b,c\} \equiv \{ 1,4, - 2\} \cup \{ - 1, - 4,2\} $