Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$(a+b)(a+b+c)=15$
$(b+c)(a+b+c)=6$
$(c+a)(a+b+c)=-3$

$\{ a,b,c\} \equiv ?$

Let $a+b+c=k$. So,

$k(a+b)=15$
$k(b+c)=6$
$k(c+a)=-3$

Adding all of the above, $k.2k=18$

$\Rightarrow k=\pm 3$

Case I: $k=3$

$a+b=\frac {15}{k}=5$
$b+c=\frac {6}{k}=2$
$c+a=\frac {-3}{k}=-1$

$c=(a+b+c)-(a+b)=k-(a+b)=3-5=-2$
$a=(a+b+c)-(b+c)=k-(b+c)=3-2=1$
$b=(a+b+c)-(c+a)=k-(c+a)=3-(-1)=4$

$\therefore \{ a,b,c\}  \equiv \{ 1,4, - 2\} $

Case II: $k=-3$

$a+b=\frac {15}{k}=-5$
$b+c=\frac {6}{k}=-2$
$c+a=\frac {-3}{k}=1$

$c=(a+b+c)-(a+b)=k-(a+b)=-3-(-5)=2$
$a=(a+b+c)-(b+c)=k-(b+c)=-3-(-2)=-1$
$b=(a+b+c)-(c+a)=k-(c+a)=-3-1=-4$

$\therefore \{ a,b,c\}  \equiv \{ -1,-4, 2\} $

Thus, $\{ a,b,c\}  \equiv \{ 1,4, - 2\}  \cup \{  - 1, - 4,2\} $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)