Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$\int\limits_0^1 {\frac{{{x^{e - 1}} - 1}}{{\ln x}}dx} = ?$

Using the result,

For $I(\lambda ) = \int\limits_a^b {f(x,\lambda )dx} $, $\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_a^b {\left[ {\frac{\partial }{{\partial \lambda }}f(x,\lambda )} \right]dx} $

Let, $I(\lambda ) = \int\limits_0^1 {\frac{{{x^\lambda } - 1}}{{\ln x}}dx} $

$\frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_0^1 {\left[ {\frac{\partial }{{\partial \lambda }}\left( {\frac{{{x^\lambda } - 1}}{{\ln x}}} \right)} \right]dx} $

$ \Rightarrow \frac{{dI(\lambda )}}{{d\lambda }} = \int\limits_0^1 {\frac{{{x^\lambda }\ln x}}{{\ln x}}dx} $

$ = \left. {\frac{{{x^{\lambda  + 1}}}}{{\lambda  + 1}}} \right|_0^1 = \frac{1}{{\lambda  + 1}}$

$I(\lambda ) = \int {\frac{1}{{\lambda  + 1}}} d\lambda  = \ln (\lambda  + 1) + C$

$I(0) = C$

Also, $I(0) = \int\limits_0^1 {\frac{{{x^0} - 1}}{{\ln x}}dx}  = 0$

So, $C = 0$

$\therefore I(\lambda ) = \ln (\lambda  + 1)$

The given integral $ = I(e - 1) = \ln (e - 1 + 1) = 1$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)